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We construct almost periodic conoidal wave solutions to SO(2,1) or-model field 
theory with the help of a periodic inverse problem suggested by Dote. The 
solutions can be explicitly constructed in terms of Riemann 0 functions. 

The inverse problem for nonlinear equations, both periodic and 
aperiodic, have been applied to several problems over the last few years. 
Detailed analyses are available about the periodic solutions for the nonlinear 
Schrrdinger equation (Dubrovnin et al., 1976), the KdV proboem (Matveev, 
1976), mixed nonlinear SchrSdinger equation (Choudhary et al., 1985), and 
massive Thirring model (Dote, 1978). On the other hand some results about 
the three-dimensional equations have been obtained by Dabrovin (1975), 
Novikov (1974), and other Soviet authors. Here we study the periodic 
inverse problem for a completely different class of theory, the or models, 
which are also known to be completely integrable. At present there exist 
various types of or-model field theory--the O(N) invariant whose special 
case is the sine-Gordon system. The sine-Gordon periodic problem has 
been thoroughly discussed by Forest and McLaughlin (1982). The other 
categories include the SO(p, q) invariant or-models (Eichemerr, 1982), not 
reducible to the sine-Gordon system, and lastly the Grassmanian or-model 
theories (Zakrzewski, 1982). Of all these we thought that it is worthwhile 
to study the SO(2,1) invariant or-model system, whose Backlund transforma- 
tion has been discussed by Chiniea (1981) and whose complete inverse 
problem on the infinite axis is done by Chowdhury and Mukherjee (1984). 
We essentially have followed the methodology put forward by Dote (Dote, 
1978; Dobrovin, 1981) and his collaborators for our problem at hand. 
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FORMULATION 

The o- model under consideration is governed by the equations 

2Z.Zv 
Zu~ - Z + Z  (1) 

The Lax pair associated with equation (1) is 

1#x = M1#, ~bt = N1# (2) 

where 

along with 

M =  Zx z + ~ ml + z ~ z  m2 

N =  Zt na 
Z+,~, +Z---~Z n2 

ml= (�89 _~), m2-- ( - ~  ~) 

nl~__( 0 _K21_-- 1), l 1 ( .  01) 
K being the eigenvalue. 

(3) 

(4) 

o'x = uo" + 2 K f x  

fix = - u ~ 1 -  2 K f *  x 

X,, = KfT1 - K f *  tr 

The temporal evolution is governed by 

2g 
o 5 = Vo'---~X 

vo, --2g* 
7 h = - + K X  

g* cr grl 

~? K 

(6) 

(7) 

which are 

Let us denote an eigenvector of (2) as (1#11#2) t. We then construct the 
equations satisfied by the squared eigenfunctions: 

0"-= ik 2, 7/~_. 1#2, X = 1#11#2 (5) 
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where 

Zx 
u=f- f* ,  f - Z + Z  

z, 
v=g-g*, g--Z+;Z 

(8) 

The starting observation for the periodic inverse problem is that 

(X 2 - ~7o')x = (X 2 -  ~7o'), = 0 (9) 

as a consequence of (6) and (7). So that X 2 -  To- is a constant or integral 
of motion. Let us denote it by P (k  2) as K is assumed to be independent 
of  t, So that 

2N+2 
X 2 -  r~o. = P ( K  2) = E Pv K2~' (10) 

T = l  

where Pv's are constant of motion. We now seek analytic series solutions 
to equations (6) and (7) in the form 

N N N 
o .=  ~ o'v K2v+2, ~ = ~ ~v KEy+2, X = E )G K2v+' (11) 

~/=0 ~,=0 y=0 

We next substitute the series forms for o., ~/, X in (6), (7), and (10), and 
equate various powers of K to get the following equations for the coefficient 
functions: 

Xza = g*o'z, +go'* 

o'~.~, = vo.~-1-2gx~ 
(12) 

x~,, = i(o.*o.~_, - o . ~ * L , )  

1 
- o.~x = (oN + ~*)o-~ + 2o'Nx~ 
l 

Since right-hand side of equation (10) is a polynomial in K we can assume 
it to be given in terms of  its zeros and hence the same type of representation 
can also be assumed to be valid for o.. By matching the coefficient of  the 
highest-order term we rewrite o. as 

o. = K2O.N(K2- p~0. . .  (K2- /~N)  
N (13) 

=K2O.N I1 (K2-/~i) 
i=1 
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Equation (13) together with (6) and (7) immediately yields 

f O" N 

f *  'ON 
(14) 

and 

O'N--1 ~ --0rN ~ /-s 

YN-2 = crN ~ ~z~s 
i<j 

(15) 

Now it is not difficult to observe from equations (6) and (7) that X is real 
and 'O = - t r * .  So we also get 

I NI 2 = P2N+  (16) 

and 

The analog of the scattering data in the case of the periodic inverse problem 
is really the zeros of o-, that is, /-Cs whose motion in the (Xt) plane will 
yield information about the structure of the nonlinear field Z. By using (13) 
in (6) and (7) we obtain 

along with 

OlXj = 2 f [ P ( l ~ ) ]  ' /2 
N 

OX (j~j)l/2 H (/'~i--J~j) 
i=l 
i# j  

(17) 

Op.j ~, I~i,[P(l~j)] 1/2 
at - N (18) 

i = 1  
i # j  

which yields information regarding the variation of the zeros/zi with respect 
to .x  and t. To explicitly solve for olzi /ot  we observe that the right-hand 
side Of equation (18) may be written as Q(/zi)/0N, so that 

Oix,/Ot Q(I~,) 
20l~i /Ot  ON ' 

where  Q(/zi) 

is some function of ~i. Now summing over i on both sides of this equation 
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we obtain 

Z Q(tzi) 
1 - - - -  

~N 

N 

or ~ON = ~ Q(/-~i) 
i = l  

Olzi/Ot Q(I~,) 

Z Old'i~ Ot ~ Q(t.ti) 

So that we can take for OpJOt 

0/z----2~ = Q(/.~) = 

Ot 

,[P(/zi)] 1/2 
(19) 

N 

i = 1  
ivaj 

Equations (17) and (19) cannot be integrated by ordinary methods but 
recourse must be taken to the theory of Abelian integrals on Riemann 
surfaces. For this purpose we define the functions l~(xt) with the help of  
Abelian differentials as follows. Firstly from equation (14) we infer that the 
simplest choice for f is 

f =  io-N (19) 

which along with (17) gives 

O ].~j = 

oX 

2[P(/zj)] 1/2 
N 

(m) '/2 I-I ( t~,-m) 
i = 1  i@j 

(20) 

Now let R be the Reimann surface of the hyperelliptic curve [ Z P ( Z ) ]  ~/2. 
The genus of the surface is N. This Reimann surface is obtained by cross- 
connecting two copies of  the Z plane which are cut along the segments 
[-ooO][EoE1][E2E3]... [E2Nco]. Let a t and bj be the closed contours defined 
as in the literature then we denote a basis of  Abelian different of  the first 
kind by 

duj = ~, C2 iK ' [KP(K)] - I /2dK (21) 
i = 0  

Then the /fls are defined as 

l~ = - du~ (22) 
o t ~ l  0 

Now we consider the variation of functions lj(gt ) we respect to both X and 
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t. D i f f e r e n t i a t i n g  ( 2 2 )  with respect to X 

O~ ( X t ) = - 4 = ,  ~ i=o ~ C~ i [ ~ P ( t ~ ) ] - ' / 2  dl~.OOtz'; 

Iv dl&,2[ p(g,,)  ]l/2 
= -  E Y. Gdx~[/x~P(/&,)] -1/2 N 

~=, , = o  (~),/2 17 (**. -~K) 
K = I  
K # o t  

N Cji2/~/~-1 - -2Cj, N (23) 
= - X E  N 

~=1i=0 1F I (g _/XK) 
K = I  
a # j  

Similarly we get 

N Cjdx~[p,~,p(t,,~)]_,/2Ol.~,~ 8d~tt (x t ) = - 2 Z 
~=~ i=o Ot 

N Cj,t.,-2 
= - s  E . ,  

~ = 1  i = 0  I-I ( / , g a - - / . , b K )  
K = I  
K # o t  

Cj, a 
= -Y.-7-x ,-2 N-, = -C j  N+, (24) 

i 1 " " 

So that the transformation through the Abelian differential linearizes the 
flow on the Reimann surface and hence we can write 

/j (,~(, t )  = - - 2 C j ,  N)  ( - -  G , N +  1 t + /0 

So the problem of determining/~j is solved by the Abelian inversion of the 
integrals (22). It is now well known that such determination is explicitly 
realized by the Reimann 0 functions. So finally we observe that the inverse 
problem solution is complete it. trN can be determined through/, j  and lastly 
f by equation (19). For this since 

I~rNI = = P2N+2 

We represent trN as 

trN = ( P2N+2)'/2 e ''(x') (25) 

and obtain from equations (12) 

OOe = 2(PIN+2)1~ 2 COS a q-2~O N 
oX 
OOt (P2N+2) 1/2 (26) 

- sin a 
Ot tpN 
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where 

@N = E f(/x,) 

So once a can be determined from equation (26) via/*i the nonlinear field 
is obtained through equation (19). 

In our above discussions we have pointed out that the methods of 
periodic inverse problem can be successfully applied for obtaining the 
conoidal wave solutions of $O(2,1)o- model field theory. The linearization 
of/zi flows is achieved through the Abel mapping, and finally the nonlinear 
field is determined through some algebraic identities [equation (19)]. 
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